Кинематика
(от греч. kinema, родительный падеж kinematos - движение), раздел механики, в котором изучаются геометрические свойства движения тел без учета их массы и действующих на них сил.
Кинематика
(от греч. kinema, родительный падеж kinematos - движение), раздел механики, в котором изучаются геометрические свойства движения тел без учета их массы и действующих на них сил.
Кинематика
Кинематика
кинематика, кинематики, мн. нет, жен. (от греч. kinema - движение) (мех.). Отдел механики - учение о движении независимо от причин, его производящих.
КИНЕМАТИКА, и, ж. Раздел механики, изучающий движение тел без учёта их массы и действующих на них сил.
| прил. кинематический, ая, ое.
Кинематика
(от греч. kinema (kinematis) — движение) — раздел классической (ньютоновой) механики, в котором изучаются геометрические свойства движения (траектории, пути) тел без учета их массы и действующих на них сил. Исходными в кинематике являются представления о пространстве и времени, их производные — скорость, ускорение.
Кинематика
— наука, изучающая состояние движения независимо от вызывающих его сил и получившая название от греческого слова κίνημα — состояние движения и составляющая часть общей науки о движении — механики. Цель ее состоит в изучении геометрических свойств движения, скоростей и ускорений: для достижения этой цели пользуются анализом и геометрией. К. называют геометрией четырех измерений, так как она имеет дело с тремя координатами пространства и еще с четвертым переменным, представляющим собой время. Скорости представляются первыми производными от координат по времени, ускорение — вторыми производными и еще, кроме того, рассматриваются производные от координат по времени высших порядков, называемые ускорениями высших порядков. С аналитической точки зрения вся К. сводится к изучению соотношений, существующих между этими величинами. В последнее время появилось стремление к изучению К. чисто геометрическими способами. Первые, весьма общие кинематические теоремы, чисто геометрического характера даны были знаменитым Пуансо (Poinsot) в его "Th é orie nouvelle de rotation des corps" в 1834 году. Если рассматривать движение таких систем, все точки которых движутся в плоскостях, параллельных между собой, то дело приводится к рассмотрению движения плоских фигур в плоскости (К. на плоскости). Перемещение неизменяемой фигуры в плоскости вполне определяется перемещением неизменяемо соединенного с той фигурой прямолинейного отрезка. Всякое же перемещение в плоскости прямолинейного отрезка из одного положения в другое может быть произведено вращением отрезка около некоторой точки, называемой центром перемещения.
Действительно: пусть A1B1 и А 2 В 2 будут два положения отрезка AB; восставим из середин А 1 А 2 и В 1 В 2 перпендикуляры ар и bq, которые пересекутся в некоторой точке P. Из равенства треугольников не трудно видеть, что PA1=PA2 и PB1=PB2 и что, следовательно, точка A может быть переведена из положения A1 в положение А 2 вращением прямой PA около точки P; точно так же доказывается, что точка B может быть переведена из положения В 1 в положение B2 вращением прямой PB около точки P. Следовательно, весь отрезок AB может быть перемещен из положения А 1 В 1 в положение А 2 В 2 вращением треугольника PAB около точки P, которая и называется центром перемещения. В случае взаимной параллельности положений А 1 В 1 и А 2 В 2 центр перемещения лежит в бесконечности.
Непрерывное движение плоской фигуры в ее плоскости рассматривается как ряд бесконечно малых перемещений фигур из одного положения в соседнее; для каждых двух соседних положений существует свой центр перемещения, называемый, в случае непрерывного движения фигуры, мгновенным центром, потому что фигура переходит из одного положения в соседнее (бесконечно мало отличающееся от первого) в бесконечно малый промежуток времени, в течение которого она, по доказанному, вращается около мгновенного центра; в следующий момент фигура переходит из второго положения в третье, вращаясь около другого мгновенного центра, и т. д. Последовательный ряд мгновенных центров образует в неподвижной плоскости кривую, называемую неподвижной полодией. В плоскости, совпадающей с неподвижной, но неизменяемо соединенной с фигурой и увлекаемой ею в ее движении, ряд мгновенных центров образует кривую, называемую подвижной полодией, и движение данной фигуры происходит так, как будто фигура эта, неизменяемо соединенная с подвижной полодией, увлекалась в движение тем, что подвижная полодия катится (см. Катание) по неподвижной полодии. Итак, движение плоских неизменяемых фигур в их плоскости приводится к катанию кривых. В каждый данный момент мгновенный центр находится в точке взаимного прикосновения полодий, и фигура вращается на бесконечно малый угол около этой точки. Поэтому скорости всех точек движущейся фигуры и точек, неизменяемо соединенных с нею, пропорциональны прямым (радиус-векторам), проведенным из этих точек в мгновенный центр, соответствующий данному моменту, и направлены по перпендикулярам к упомянутым радиус-векторам. Подобным же образом движение твердого тела около неподвижной точки и исследование скорости этого движения приводится к изучению катания одного конуса по другому, причем вершины обоих конусов находятся в неподвижной точке, а конусам этим присваивается название аксоидов. Самое общее (всякое) движение твердого тела приводится к катанию одной линейчатой поверхности (см.) по другой, соединенному со скольжением (см.). Движение около точки и общее движение изучаются К. в пространстве. К. изучает и движение изменяемых систем. Скорости поступательные, скорости вращения и ускорения изображаются прямолинейными отрезками и складываются по правилам сложения векторов (см. Сложение векторов). Доказывается, что в бесконечно малый момент всякое движение неизменяемой системы приводится к винтовому. К. жидкого тела опирается главнейшим образом на исследование деформаций бесконечно малого параллелепипеда и на конформное преобразование плоскостей мнимого переменного.
Выделение К., как особой науки, из общего цикла наук о движении произведено было Ампером в его "Essai sur la philosophie des sciences" в 1834 г. Чисто аналитическую обработку К. получила в сочинении Резаля: "Trait é de ciné matique pure". В следующих сочинениях: Бобылев, "Курс аналитической механики"; Schel, "Theorie der Bewegung und der Kr äfte"; Collignon, "Traité de mecanique"; Сомов, "Теоретическая механика" и во многих других методы аналитический и геометрический взаимно дополняются. Превосходное, чисто геометрическое изложение К. дается в книге Бурместра "Lehrbuch der Kinematik". В связи с приложением к теории механизмов К. трактуется в классическом сочинении Reuleaux "Theoretische Kinematik" (1888), а также в следующих: Willis, "Principles of Mechanism" (1841); Giulio, "Elem enti di cinématica applicata alle arti" (1847); Laboulaye, "Traité de cinématique" (1849, 1864, 1878); Morin, "Notion géométriques sur les mouvements et leurs transformations" (1851); Girault, "Eléments de Géométrie appliquée à la transformation du mouvement dans les machines" (1858); Belanger, "Traité de cinématique" (1864); Haton de la Goupillière, "Traité de mécanismes" (1864); Bour, "Cours de mé canique et machines" (1865) и Streinz, "Physikalische Grundlagen der Mechanik" (1883). К. жидкого тела изложена в сочинении профессора Жуковского: "Кинематика жидкого тела" (1876).
H. Делоне.
Общий запас лексики (от греч. Lexikos) — это комплекс всех основных смысловых единиц одного языка. Лексическое значение слова раскрывает общепринятое представление о предмете, свойстве, действии, чувстве, абстрактном явлении, воздействии, событии и тому подобное. Иначе говоря, определяет, что обозначает данное понятие в массовом сознании. Как только неизвестное явление обретает ясность, конкретные признаки, либо возникает осознание объекта, люди присваивают ему название (звуко-буквенную оболочку), а точнее, лексическое значение. После этого оно попадает в словарь определений с трактовкой содержания.
Словечек и узкоспециализированных терминов в каждом языке так много, что знать все их интерпретации попросту нереально. В современном мире существует масса тематических справочников, энциклопедий, тезаурусов, глоссариев. Пробежимся по их разновидностям:
Проще изъясняться, конкретно и более ёмко выражать мысли, оживить свою речь, — все это осуществимо с расширенным словарным запасом. С помощью ресурса How to all вы определите значение слов онлайн, подберете родственные синонимы и пополните свою лексику. Последний пункт легко восполнить чтением художественной литературы. Вы станете более эрудированным интересным собеседником и поддержите разговор на разнообразные темы. Литераторам и писателям для разогрева внутреннего генератора идей полезно будет узнать, что означают слова, предположим, эпохи Средневековья или из философского глоссария.
Глобализация берет свое. Это сказывается на письменной речи. Стало модным смешанное написание кириллицей и латиницей, без транслитерации: SPA-салон, fashion-индустрия, GPS-навигатор, Hi-Fi или High End акустика, Hi-Tech электроника. Чтобы корректно интерпретировать содержание слов-гибридов, переключайтесь между языковыми раскладками клавиатуры. Пусть ваша речь ломает стереотипы. Тексты волнуют чувства, проливаются эликсиром на душу и не имеют срока давности. Удачи в творческих экспериментах!
Проект how-to-all.com развивается и пополняется современными словарями с лексикой реального времени. Следите за обновлениями. Этот сайт помогает говорить и писать по-русски правильно. Расскажите о нас всем, кто учится в универе, школе, готовится к сдаче ЕГЭ, пишет тексты, изучает русский язык.