Значение слова «гиперболы»

Что означает слово «гиперболы»

Энциклопедия Брокгауза и Ефрона

Гиперболы

— Под этим названием известен в аналитической геометрии ряд кривых линий. 1) Г. второго порядка, или так называемая Аполлониева гипербола. Эта кривая линия была известна уже грекам и принадлежит к числу конических сечений, т. е. получается через сечение прямого кругового конуса плоскостью. В аналитической геометрии гипербола эта, будучи линией второго порядка, определяется уравнением

(1) Ax2 + 2Bxy + Cy2 + 2Dx + 2Ey + F = 0

в том случае, когда АС — В 2 < 0, Г. второго порядка состоит из двух отдельных ветвей (черт. 1).

Черт. 1.

Между этими ветвями лежит некоторая точка О, называемая центром Г., относительно которой точки Г. попарно симметричны; другими словами — всякая прямая, проведенная через центр, пересекает Г. в двух точках, лежащих на одинаковом расстоянии по разные стороны от центра. Из таких секущих, проведенных через центр, существуют две взаимно перпендикулярные ОХ и OY, называемые осями. Относительно этих осей Г. симметрична. Ось ОХ пересекает Г. в двух точках А и А 1, лежащих на разных ветвях Г. и называемых вершинами Г.; другая же ось OY лежит между ветвями Г. и не пересекает ее. Если мы выберем новую систему координат таким образом, что за новое начало координат выберем центр Г., а за ось х-ов пересекающую ось ОХ Г., за ось у-ов, не пересекающую ось Г. ОY и уравнение Г., написанное при старых координатах в виде, приведенном выше, преобразуем по формулам аналитической геометрии для перехода от старых координат к новым, то новое уравнение Г. при новых координатах будет иметь следующий весьма простой вид:

(2) x22 — у 2/b2 = 1

где а есть не что иное, как расстояние от центра до одной из вершин и, следовательно, есть так называемая длина действительной полуоси Г., так, как расстояние от центра до одной из вершин есть половина расстояния между вершинами А и а 1, которое есть не что иное, как длина всей пересекающей оси. Если мы в уравнении (2) во второй части вместо 1 поставим 0, то получим уравнение

(3) x22 — у 2/b2 = 0,

определяющее две прямые, проходящие через начало координат, т. е. центр гипербола. В самом деле, уравнение можно переписать так:

(x/a + y/b)(x/a — y/b) = 0,

а оно распадается на два следующих:

x/a + y/b = 0

и

x/a — y/b = 0

определяющих две прямые, называемые асимптотами. Эти асимптоты расположены симметрично относительно осей Г. и наклонены с разных сторон к оси ОХ под углом φ, определяемым из равенства

tang φ = b/a.

Каждая из асимптот пересекает Г. в точке, лежащей на бесконечности. Обе ветви Г. лежат в двух вертикальных углах между асимптотами, при чем они приближаются к асимптотам по мере удаления от центра. Если мы будем пересекать Г. рядом прямых линий, параллельных между собой, то каждая из этих хорд будет иметь две точки пересечения с гиперболой; середины этих параллельных хорд лежат на некоторой прямой, проходящей через центр Г. и называемой диаметром Г. Всякая прямая, проходящая через центр, есть диаметр для хорд некоторого направления. Если теперь мы проведем два диаметра, из которых один параллелен хордам, которые делит пополам другой, то такие два диаметра называются сопряженными. Свойство сопряженных диаметров состоит в том, что каждый из них параллелен хордам, делящимся пополам другим. Две оси суть не что иное, как пара взаимно-перпендикулярных сопряженных диаметров. Если мы один из сопряженных диаметров будем вращать вокруг центра, начиная с положения, совпадающего с осью х-ов, в сторону, обратную движению часовой стрелки, при чем, очевидно, этот диаметр будет приближаться к асимптоте E 1 OE, то сопряженный диаметр будет вращаться в обратную сторону, начиная с положения, совпадающего с осью OY, и стремиться подойти с другой стороны к той же асимптоте Е 1 ОЕ, так что предельным положением такой пары вращающихся сопряженных диаметров будет асимптота Е 1 ОЕ, с которой стремятся совпасть оба диаметра. То же самое будет иметь место по отношению к другой асимптоте С 1 ОС — если мы начнем вращать один из диаметров, начиная с положения ОХ, по направлению часовой строки, приближая к асимптоте С 1 ОС. Уравнения двух сопряженных диаметров имеют вид

l(x/a) + y/b = 0, x/a + l(y/b) = 0;

меняя в этой системе число l, будем получать разные пары сопряженных диаметров: при l = 0 получаются, очевидно, оси; при l = — 1 оба уравнения обращаются в уравнение асимптоты Е 1 ОЕ; при l = 1 получаем асимптоту СОС, при l каком-нибудь, отличном от этих трех чисел, получаем какую-нибудь пару сопряженных диаметров. Остается теперь обратить внимание на две замечательные точки F и F 1, называемые фокусами Г.; эти точки лежат на пересекающей оси Г. в расстоянии от центра, равном √(a2 + b2). Основное свойство этих фокусов состоит в том, что расстояние каждой точки M Г. до одного из этих фокусов выражается линейной функцией от абсциссы точки М. Если эту линейную функцию мы приравняем нулю, то получим уравнение некоторой прямой линии, называемой директрисой. Директрис две: D и D 1; обе они перпендикулярны оси х - ов и лежат по обе стороны оси у-ов на расстоянии, равном a2/√(a2 + b2). Если соединим точку М, лежащую на Г., с двумя фокусами F и F 1 прямыми MF и МF 1 и обозначим расстояния MF, MF 1 через v и v1, то, если точка М лежит, как это показано на чертеже, на правой ветви Г., мы получим

v1 — v = 2а;

если же на левой, то

v — v1 = 2a,

другими словами, мы видим, что Г. есть геометрическое место точек, разность расстояний которых от двух заданных, называемых фокусами, есть величина постоянная и равна — длине перестающей оси Г. Из такого определения Г. следует весьма простой механический способ черчения этой кривой. Если возьмем полярные координаты, причем полюс поместим в одном из фокусов Г., а полярную ось направим по пересекающей оси Г., тогда уравнение Г. принимает следующий замечательный вид, употребляемый в астрономии:

r = p/(1 + eCos Θ),

где r и Θ суть полярные координаты точки на Г.: r — расстояние точки до полюса, так называемый радиус вектор точки, а Θ — угол, составляемый радиусом вектором с полярной осью; p есть так называемый параметр Г. и равняется b2/a, т. е. ординате у, соответствующей фокусу;

е = √(a 2 + b2)/a

называется астрономическим эксцентриситетом гиперболы; число е больше единицы и показывает, во сколько раз расстояние фокуса до центра больше расстояния вершины до центра. Дадим теперь геометрическое толкование числу b. Если мы в уравнении (2) во второй части переменим + 1 на — 1, т. е. возьмем

x22 — у 2/b2 = — 1,

то получим новую Г., называемую сопряженной, при чем эта новая Г. займет другую пару вертикальных углов между асимптотами, как показано на чертеже. Для сопряженной Г. центр и асимптоты будут те же, что и для заданной. Перестающая же ось для сопряженной Г. совпадает с мнимой осью первоначальной, при чем длина этой оси BB 1 будет, очевидно, равна 2b. Укажем теперь на свойства сопряженных диаметров, замеченные Аполлонием. Так как сопряженные диаметры лежат в разных вертикальных углах, образуемых асимптотами, то очевидно, что один из них пересекает в двух точках заданную Г., а другой — сопряженную. Назовем длину полудиаметра, пересекающего заданную Г., через а 1, а длину сопряженного полудиаметра, пересекающего Г. сопряженную, через b1, тогда будет иметь место для всякой пары сопряженных диаметров равенство

a12 b12 = a2 b2,

т. е. разность квадратов сопряженных полудиаметров в Г. есть величина постоянная, равная разности квадратов полуосей. В четырех точках пересечения заданной Г. и сопряженной двумя сопряженными диаметрами проведем четыре касательные линии; эти касательные образуют параллелограмм, вершины которого лежат на асимптотах, стороны же, очевидно, параллельны рассматриваемым диаметрам. Площадь этого параллелограмма есть величина постоянная, равная 4аb, т. е. площади прямоугольника, построенного на осях.

Черт. 2.

Если числа а и b равны между собой, то уравнение Г. будет иметь вид

х 2 у 2 = а 2,

причем Г. будет так называемая равносторонняя, ее асимптоты будут взаимно перпендикулярны, а сопряженная Г. будет подобна заданной, при чем поворотом на 90° вокруг центра может быть совмещена с заданной. Равносторонняя Г. играет ту же роль относительно разносторонней, какую круг относительно эллипса. Если мы возьмем асимптоты за координатные оси, тогда уравнение Г. примет вид

xy = k2,

где k — число постоянное, зависящее от полуосей.

2) Змеевидная Г. — так наз. линия, определяемая уравнением

xy2 + aby — a2 х = 0.

3) Г. высшего порядка — так наз. линии, определяемые уравнением

xnym = a,

где m и n числа целые, положительные. При n = m = 1 последнее уравнение даёт Г. второго порядка. Асимптотами этих Г. служат оси координат.

Д. Граве.


Морфологический разбор «гиперболы»

часть речи: имя существительное; одушевлённость: неодушевлённое; род: женский; число: единственное, множественное; падеж: родительный, именительный, винительный; отвечает на вопрос: (нет/около) Чего?, (есть) Что?, (вижу/виню) Что? ...

Фонетический разбор «гиперболы»

транскрипция: [г'ип'э́рбалы]
количество слогов: 4
переносы: (ги - пер - бо - лы) ...

Близкие по смыслу слова к слову «гиперболы»


Словари русского языка

Лексическое значение: определение

Общий запас лексики (от греч. Lexikos) — это комплекс всех основных смысловых единиц одного языка. Лексическое значение слова раскрывает общепринятое представление о предмете, свойстве, действии, чувстве, абстрактном явлении, воздействии, событии и тому подобное. Иначе говоря, определяет, что обозначает данное понятие в массовом сознании. Как только неизвестное явление обретает ясность, конкретные признаки, либо возникает осознание объекта, люди присваивают ему название (звуко-буквенную оболочку), а точнее, лексическое значение. После этого оно попадает в словарь определений с трактовкой содержания.

Словари онлайн бесплатно — открывать для себя новое

Словечек и узкоспециализированных терминов в каждом языке так много, что знать все их интерпретации попросту нереально. В современном мире существует масса тематических справочников, энциклопедий, тезаурусов, глоссариев. Пробежимся по их разновидностям:

  • Толковые
    Найти значение слова вы сможете в толковом словаре русского языка. Каждая пояснительная «статья» толкователя трактует искомое понятие на родном языке, и рассматривает его употребление в контенте. (PS: Еще больше случаев словоупотребления, но без пояснений, вы прочитаете в Национальном корпусе русского языка. Это самая объемная база письменных и устных текстов родной речи.) Под авторством Даля В.И., Ожегова С.И., Ушакова Д.Н. выпущены наиболее известные в нашей стране тезаурусы с истолкованием семантики. Единственный их недостаток — издания старые, поэтому лексический состав не пополняется.
  • Энциклопедические
    В отличии от толковых, академические и энциклопедические онлайн-словари дают более полное, развернутое разъяснение смысла. Большие энциклопедические издания содержат информацию об исторических событиях, личностях, культурных аспектах, артефактах. Статьи энциклопедий повествуют о реалиях прошлого и расширяют кругозор. Они могут быть универсальными, либо тематичными, рассчитанными на конкретную аудиторию пользователей. К примеру, «Лексикон финансовых терминов», «Энциклопедия домоводства», «Философия. Энциклопедический глоссарий», «Энциклопедия моды и одежды», мультиязычная универсальная онлайн-энциклопедия «Википедия».
  • Отраслевые
    Эти глоссарии предназначены для специалистов конкретного профиля. Их цель объяснить профессиональные термины, толковое значение специфических понятий узкой сферы, отраслей науки, бизнеса, промышленности. Они издаются в формате словарика, терминологического справочника или научно-справочного пособия («Тезаурус по рекламе, маркетингу и PR», «Юридический справочник», «Терминология МЧС»).
  • Этимологические и заимствований
    Этимологический словарик — это лингвистическая энциклопедия. В нем вы прочитаете версии происхождения лексических значений, от чего образовалось слово (исконное, заимствованное), его морфемный состав, семасиология, время появления, исторические изменения, анализ. Лексикограф установит откуда лексика была заимствована, рассмотрит последующие семантические обогащения в группе родственных словоформ, а так же сферу функционирования. Даст варианты использования в разговоре. В качестве образца, этимологический и лексический разбор понятия «фамилия»: заимствованно из латинского (familia), где означало родовое гнездо, семью, домочадцев. С XVIII века используется в качестве второго личного имени (наследуемого). Входит в активный лексикон.
    Этимологический словарик также объясняет происхождение подтекста крылатых фраз, фразеологизмов. Давайте прокомментируем устойчивое выражение «подлинная правда». Оно трактуется как сущая правда, абсолютная истина. Не поверите, при этимологическом анализе выяснилось, эта идиома берет начало от способа средневековых пыток. Подсудимого били кнутом с завязанными на конце узлом, который назывался «линь». Под линью человек выдавал все начистоту, под-линную правду.
  • Глоссарии устаревшей лексики
    Чем отличаются архаизмы от историзмов? Какие-то предметы последовательно выпадают из обихода. А следом выходят из употребления лексические определения единиц. Словечки, которые описывают исчезнувшие из жизни явления и предметы, относят к историзмам. Примеры историзмов: камзол, мушкет, царь, хан, баклуши, политрук, приказчик, мошна, кокошник, халдей, волость и прочие. Узнать какое значение имеют слова, которые больше не употребляется в устной речи, вам удастся из сборников устаревших фраз.
    Архаизмамы — это словечки, которые сохранили суть, изменив терминологию: пиит — поэт, чело — лоб, целковый — рубль, заморский — иностранный, фортеция — крепость, земский — общегосударственный, цвибак — бисквитный коржик, печенье. Иначе говоря их заместили синонимы, более актуальные в современной действительности. В эту категорию попали старославянизмы — лексика из старославянского, близкая к русскому: град (старосл.) — город (рус.), чадо — дитя, врата — ворота, персты — пальцы, уста — губы, влачиться — волочить ноги. Архаизмы встречаются в обороте писателей, поэтов, в псевдоисторических и фэнтези фильмах.
  • Переводческие, иностранные
    Двуязычные словари для перевода текстов и слов с одного языка на другой. Англо-русский, испанский, немецкий, французский и прочие.
  • Фразеологический сборник
    Фразеологизмы — это лексически устойчивые обороты, с нечленимой структурой и определенным подтекстом. К ним относятся поговорки, пословицы, идиомы, крылатые выражения, афоризмы. Некоторые словосочетания перекочевали из легенд и мифов. Они придают литературному слогу художественную выразительность. Фразеологические обороты обычно употребляют в переносном смысле. Замена какого-либо компонента, перестановка или разрыв словосочетания приводят к речевой ошибке, нераспознанному подтексту фразы, искажению сути при переводе на другие языки. Найдите переносное значение подобных выражений в фразеологическом словарике.
    Примеры фразеологизмов: «На седьмом небе», «Комар носа не подточит», «Голубая кровь», «Адвокат Дьявола», «Сжечь мосты», «Секрет Полишинеля», «Как в воду глядел», «Пыль в глаза пускать», «Работать спустя рукава», «Дамоклов меч», «Дары данайцев», «Палка о двух концах», «Яблоко раздора», «Нагреть руки», «Сизифов труд», «Лезть на стенку», «Держать ухо востро», «Метать бисер перед свиньями», «С гулькин нос», «Стреляный воробей», «Авгиевы конюшни», «Калиф на час», «Ломать голову», «Души не чаять», «Ушами хлопать», «Ахиллесова пята», «Собаку съел», «Как с гуся вода», «Ухватиться за соломинку», «Строить воздушные замки», «Быть в тренде», «Жить как сыр в масле».
  • Определение неологизмов
    Языковые изменения стимулирует динамичная жизнь. Человечество стремятся к развитию, упрощению быта, инновациям, а это способствует появлению новых вещей, техники. Неологизмы — лексические выражения незнакомых предметов, новых реалий в жизни людей, появившихся понятий, явлений. К примеру, что означает «бариста» — это профессия кофевара; профессионала по приготовлению кофе, который разбирается в сортах кофейных зерен, умеет красиво оформить дымящиеся чашечки с напитком перед подачей клиенту. Каждое словцо когда-то было неологизмом, пока не стало общеупотребительным, и не вошло в активный словарный состав общелитературного языка. Многие из них исчезают, даже не попав в активное употребление.
    Неологизмы бывают словообразовательными, то есть абсолютно новообразованными (в том числе от англицизмов), и семантическими. К семантическим неологизмам относятся уже известные лексические понятия, наделенные свежим содержанием, например «пират» — не только морской корсар, но и нарушитель авторских прав, пользователь торрент-ресурсов. Вот лишь некоторые случаи словообразовательных неологизмов: лайфхак, мем, загуглить, флэшмоб, кастинг-директор, пре-продакшн, копирайтинг, френдить, пропиарить, манимейкер, скринить, фрилансинг, хедлайнер, блогер, дауншифтинг, фейковый, брендализм. Еще вариант, «копираст» — владелец контента или ярый сторонник интеллектуальных прав.
  • Прочие 177+
    Кроме перечисленных, есть тезаурусы: лингвистические, по различным областям языкознания; диалектные; лингвострановедческие; грамматические; лингвистических терминов; эпонимов; расшифровки сокращений; лексикон туриста; сленга. Школьникам пригодятся лексические словарники с синонимами, антонимами, омонимами, паронимами и учебные: орфографический, по пунктуации, словообразовательный, морфемный. Орфоэпический справочник для постановки ударений и правильного литературного произношения (фонетика). В топонимических словарях-справочниках содержатся географические сведения по регионам и названия. В антропонимических — данные о собственных именах, фамилиях, прозвищах.

Толкование слов онлайн: кратчайший путь к знаниям

Проще изъясняться, конкретно и более ёмко выражать мысли, оживить свою речь, — все это осуществимо с расширенным словарным запасом. С помощью ресурса How to all вы определите значение слов онлайн, подберете родственные синонимы и пополните свою лексику. Последний пункт легко восполнить чтением художественной литературы. Вы станете более эрудированным интересным собеседником и поддержите разговор на разнообразные темы. Литераторам и писателям для разогрева внутреннего генератора идей полезно будет узнать, что означают слова, предположим, эпохи Средневековья или из философского глоссария.

Глобализация берет свое. Это сказывается на письменной речи. Стало модным смешанное написание кириллицей и латиницей, без транслитерации: SPA-салон, fashion-индустрия, GPS-навигатор, Hi-Fi или High End акустика, Hi-Tech электроника. Чтобы корректно интерпретировать содержание слов-гибридов, переключайтесь между языковыми раскладками клавиатуры. Пусть ваша речь ломает стереотипы. Тексты волнуют чувства, проливаются эликсиром на душу и не имеют срока давности. Удачи в творческих экспериментах!

Проект how-to-all.com развивается и пополняется современными словарями с лексикой реального времени. Следите за обновлениями. Этот сайт помогает говорить и писать по-русски правильно. Расскажите о нас всем, кто учится в универе, школе, готовится к сдаче ЕГЭ, пишет тексты, изучает русский язык.