Значение слова «логарифм»

Что означает слово «логарифм»

Словарь Ефремовой

Логарифм

м.
Показатель степени, в которую нужно возвести число, называемое основанием,
чтобы получить данное число (в математике).

Словарь Ушакова

Логарифм

логарифм, логарифма, муж. (от греч. logos - слово и arithmos - число) (мат.). Показатель степени, в которую надо возвести число, называемое основанием, чтобы получить данное число.

Словарь Ожегова

ЛОГАРИФМ, а, м. В математике: показатель степени, в к-рую надо возвести число, называемое основанием, чтобы получить данное число. Таблица логарифмов.

| прил. логарифмический, ая, ое. Логарифмическая линейка (счётный инструмент).

Этимологический Словарь Русского Языка

Логарифм

Греческое – logos (соотношение, соответствие), arithmos (число).

Первоисточником является греческий язык. В 1614 г. шотландский математик Непер создал термин logaritmus. В XVIII в. в связи с развитием точных наук произошло заимствование, и термин появился в русском языке.

В современном русском языке слово имеет следующее значение: «показатель степени, в которую следует возвести число».

Производные: логарифмический, логарифмировать.

Энциклопедия Брокгауза и Ефрона

Логарифм

— Л. данного числа n называется показатель степени, в которую нужно возвести некоторое другое данное число а, называемое основанием, чтобы получить n; так что зависимость между данным числом n, основанием а и Л. х числа n выражается формулою n = a х. Л. числа обозначается символом log, или lg, или L. Л. числа n, взятый при основании а, обозначается иногда так: lgan, причем всегда должно удовлетворяться равенство n = algan. Например, из равенства 1000=10 3 следует 3=lg 10 1000. Из равенства n= а lgan вытекают свойства логарифмов, обусловливающие полезность этой функции, а именно: 1) Л. произведения равен сумме Л. производителей; 2) Л. частного равен разности Л. делимого и делителя; 3) Л. степени равен произведению показателя степени на число, возводимое в степень; 4) Л. корня равен Л. подкоренной величины, разделенному на показатель корня. Эти свойства выражаются формулами:

lg(uv) = lgu + lgv;

lg(u/v) = lgu — lgv;

lg(um) = mlgu;

lgm√u = lgu/m.

Обладая такими свойствами, Л. дают возможность свести: умножение на сложение, деление на вычитание, возведение в степень на умножение и извлечение корня на деление, что и выясняет огромное практическое значение Л. для всех, кто имеет дело со сложными арифметическими вычислениями. При нашей десятичной системе исчисления самым удобным основанием оказывается число 10; имеется и множество таблиц, в которых даются Л. последовательных чисел начиная от 1 до 100000. При основании, равном 10, только Л. целых степеней десяти суть целые числа, Л. же простых чисел представляются десятичными дробями, например lg 30=1,4771213. Целая часть такой дроби наз. характеристикою, а дробная — мантиссою. Характеристика определяется прямо по числу цифр целой части числа, именно, она равна числу таких цифр без единицы. Например, для числа 354,25, имеющего три цифры в целой части, характеристика будет 2. Благодаря такому легкому способу определения характеристики в таблицах дается лишь одна мантисса. Для большего упрощения вычислений самое вычитание Л. заменяется обыкновенно сложением, для чего вводят вместо вычитаемого Л. дополнение этого Л. Дополнением называется разность между Л. и числом 10. Если характеристика данного Л. более 10, то характеристика дополнения будет отрицательная, что и обозначается знаком -, который ставится над нею; например, дополнение от 12,3542351 будет . Вычесть из одного Л. другой Л. все равно, что придать к первому Л. дополнение второго и из результата вычесть 10. Для уяснения пользы, приносимой Л. при вычислениях, возьмем два примера. 1) Определим конечный результат арифметических действий, выражаемых формулой x =(53126·32135)/(25677·62353). Производя эти действия обыкновенными приемами, мы должны были бы исписать довольно много бумаги; с помощью Л. задача решается тем, что подыскиваются в таблице Л. чисел, стоящих в числителе, и Л. чисел, стоящих в знаменателе, из последних в уме определяются их дополнения, и все это складывается следующим образом:

Ближайший к нему Л. в таблицах имеет мантиссу 0278794, и ему соотвтствует в таблице число 10663; соответствующее число должно иметь одну цифру в целой части; если возьмет 1,0668, то это число выразит собою искомое число с точностью 0,0001. 2) Найдем . Обыкновенная алгебра даже не дает никаких других приемов для вычисления такого радикала кроме логарифмирования, посредством которого задача решается тем, что отыскивается в таблице lg3=0,4 771213; делением этого Л. на 5 получается 0,0954242, ближайший к этому логарифм в таблицах находим: 0,0954135 , которому соответствует в таблице число 1,2457; это и будет с точностью 0,0001. Логарифмы были изобретены шотландским геометром Непером (Napier), который в 1614 году напечатал "Mirifici logarithmorum canonis descriptio", посвященное им принцу Валлийскому (впоследствии король Карл I). Это сочинение in 4° представляет 56 страниц текста и 90 страниц таблиц; оканчивается оно словами: "собирая плоды этого небольшого произведения, воздайте должную славу и благодарность Богу высшему создателю и расточителю всех благ". Непер принял за основание своих таблиц особое несоизмеримое число, имеющее чрезвычайно важное значение в анализе и обозначаемое обыкновенно через е. Такой выбор основания поясняется следующими соображениями. Пусть α есть весьма малая величина, а — основание какой-либо системы; тогда члены арифметической прогрессии: 0, α, 2 α, 3 α... представят собою Л. членов геометрической прогрессии: 1, а α, а 2 α , а 3 α ..., в которой знаменатель отношения а α, благодаря малости а, весьма мало отличается от 1. Назовем через β ту малую величину, на которую а α отличается от 1, так что a α =1+ β; положим α / β=M. Тогда арифметическая прогрессия примет вид: 0, Mβ, 2M β, 3M β..., геометрическая же обратится в (1+β)0, (1+ β)1, (1+ β)2... Количество β совершенно произвольно: известно только, что оно очень мало; множитель же M зависит от того, какое мы избрали основание. Самое простое положить M =1. Основание, при котором М=1, и выбрано было Непером для его таблиц. Определим его величину: при М=1 упомянутая арифметическая прогрессия обращается в: 0, β, 2 β, 3 β..., геометрическая есть (1+β)0, (1+ β)1, (1+ β)2...; основание есть то число, которого Л. равен единице; положим, что (m+1) ый член арифметической прогрессии равен 1, то есть что m β=1, тогда соответствующий член (1+β)m геометрической прогрессии и будет основанием, при котором М=1. Подставим в этот член вместо β его величину из m β=1, получим [1+(1/ m)]m. Эта величина и будет основанием неперовых Л., так что, разлагая до бинома Ньютона, получим

e = (1+m/1)m = 1 + m(1/m) + [m(m-1)/1.2]1/m2 +... или

e = (1+1/m)m = 1 + 1 + (1-1/m)/1.2 + [(1-m/1)(1-2/m)]/1.2.3 +...;

так как β весьма мало, то m весьма велико, и дроби, содержащие m в знаменателе, по малой их величине можно отбросить; таким образом получим:

e = 1+1+(1/1.2)+(1/1.2.3)+(1/1.2.3.4)+...=2,71828....

Неперовы Л. называются иногда гиперболическими или натуральными; натуральными потому, что проще всего было предположить М=1; гиперболическими потому, что если в равносторонней гиперболе, отнесенной к асимптотам, принять абсциссу вершины за единицу, то площадь, заключенная между гиперболою, осью абсцисс, ординатою вершины и ординатою, соответствующею абсциссе x, равна lgx в неперовой системе. Величина е имеет особенно важное значение в анализе благодаря существованию ряда:

ex = 1+x+(x2/1.2)+(x3/1.2.3)+(x4/1.2.3.4)+...;

благодаря способности разлагаться в такой ряд показательная функция e х служит переходом от алгебраических функций к тригонометрическим, потому что из сравнения этого ряда с разложениями cosx и sinx следуют формулы:

; .

Зная Л. числа m при данном основании а, можно определить Л. х числа m и при всяком другом основании b, потому что из равенства m=е следует lgm=xlgab, откуда: х=lg bm=(lgam)/(lga b); из этой формулы видно, что, имея Л. числа m при основании а, следует только помножить его на 1/(lg a b), чтобы получить Л. числа m при основании b. Множитель, служащий для перехода от одной системы к другой, называется модулем. Модуль, на который следует множить неперовы Л. для получения Л. при основании 10, равен 0,4349448. Л. удовлетворяют, между прочим, следующим замечательным рядам: lg(1+x)=(x — x2/2 + x3/3 + x4/4 +...)M, где M есть модуль для перехода от неперовых Л.; lg(n+1)-lgn = 2M[1/(2n+1) + 1/3(2n+1)3 + 1/5(2n+1)5 +...]. Посредством последнего, весьма быстро сходящегося ряда обыкновенно и вычисляются Л. следующим образом: зная, что lg100=2, подставим в наш ряд 100 вместо n; получим lg101 — 2 = M(1/201 + 1/3.2013 + 1/5.2015 +...); последующие члены ряда, стоящего в скобках, уже настолько малы, что ими можно пренебречь и простым вычислением получить lg101=2,0043214; зная lg101, получим lg102 и так далее. Понятие о Л. обобщается распространением логарифмирования и на мнимые функции; при этом получаются формулы: lg(a+bi) = lg[r(cos φ +isin φ)] = lgr + (2n π + φ)i, где i=√(-1), r=√(a2+b2), cos φ =a/[√(a2+b2)], sin φ =b/[√(a2+b2)]

Кроме Л. чисел, в таблицах обыкновенно помещаются Л. тригонометрических величин (см. Тригонометрические таблицы). Первые таблицы, в которых за основание было принято число 10, были напечатаны другом Непера Бриггом в 1624 г. под заглавием "Arithmetica logarithmica". В таблице Бригга были даны Л. чисел, начиная с 1 до 20000 и от 90000 до 1 00000, с 14 знаками в мантиссе. Голландский математик Влакк (Adrien Vlacq) пополнил пробел бригговских таблиц и напечатал в 1628 г. таблицы, содержащие Л. всех чисел от 1 до 100000, с десятью знаками в мантиссе. Из последующих изданий наиболее известны таблицы Гардинера, Баббаджа и Тейлора. В настоящее время употребляются чаще всего при вычислениях таблицы Каллета (до 106000), карманные таблицы Лаланда с пятью знаками и таблицы Бремикера семизначные, представляющие обработку таблиц Веги "Thesaurus logarith m orum completus" (1794). Существуют и весьма распространены у нас русские табл. Бремикера, напечатанные стереотипно.

Гауссовы Л. Для определения Л. суммы и разности двух чисел по Л. этих чисел Гаусс изобрел особые таблицы. Лучшие издания Гауссовых Л. представляют издания Витштейна, Матиссена и Цеха.

Н. Делоне.


Морфологический разбор «логарифм»

часть речи: имя существительное; одушевлённость: неодушевлённое; род: мужской; число: единственное; падеж: именительный, винительный; отвечает на вопрос: (есть) Что?, (вижу/виню) Что? ...

Фонетический разбор «логарифм»

транскрипция: [лагар'и́фм]
количество слогов: 3
переносы: (ло - га - рифм) ...

Ассоциации к слову «логарифм»


Цитаты со словом «логарифм»


Близкие по смыслу слова к слову «логарифм»

логарифмом
подкоренного
подкоренное
биквадратное
прологарифмировать

Словари русского языка

Лексическое значение: определение

Общий запас лексики (от греч. Lexikos) — это комплекс всех основных смысловых единиц одного языка. Лексическое значение слова раскрывает общепринятое представление о предмете, свойстве, действии, чувстве, абстрактном явлении, воздействии, событии и тому подобное. Иначе говоря, определяет, что обозначает данное понятие в массовом сознании. Как только неизвестное явление обретает ясность, конкретные признаки, либо возникает осознание объекта, люди присваивают ему название (звуко-буквенную оболочку), а точнее, лексическое значение. После этого оно попадает в словарь определений с трактовкой содержания.

Словари онлайн бесплатно — открывать для себя новое

Словечек и узкоспециализированных терминов в каждом языке так много, что знать все их интерпретации попросту нереально. В современном мире существует масса тематических справочников, энциклопедий, тезаурусов, глоссариев. Пробежимся по их разновидностям:

  • Толковые
    Найти значение слова вы сможете в толковом словаре русского языка. Каждая пояснительная «статья» толкователя трактует искомое понятие на родном языке, и рассматривает его употребление в контенте. (PS: Еще больше случаев словоупотребления, но без пояснений, вы прочитаете в Национальном корпусе русского языка. Это самая объемная база письменных и устных текстов родной речи.) Под авторством Даля В.И., Ожегова С.И., Ушакова Д.Н. выпущены наиболее известные в нашей стране тезаурусы с истолкованием семантики. Единственный их недостаток — издания старые, поэтому лексический состав не пополняется.
  • Энциклопедические
    В отличии от толковых, академические и энциклопедические онлайн-словари дают более полное, развернутое разъяснение смысла. Большие энциклопедические издания содержат информацию об исторических событиях, личностях, культурных аспектах, артефактах. Статьи энциклопедий повествуют о реалиях прошлого и расширяют кругозор. Они могут быть универсальными, либо тематичными, рассчитанными на конкретную аудиторию пользователей. К примеру, «Лексикон финансовых терминов», «Энциклопедия домоводства», «Философия. Энциклопедический глоссарий», «Энциклопедия моды и одежды», мультиязычная универсальная онлайн-энциклопедия «Википедия».
  • Отраслевые
    Эти глоссарии предназначены для специалистов конкретного профиля. Их цель объяснить профессиональные термины, толковое значение специфических понятий узкой сферы, отраслей науки, бизнеса, промышленности. Они издаются в формате словарика, терминологического справочника или научно-справочного пособия («Тезаурус по рекламе, маркетингу и PR», «Юридический справочник», «Терминология МЧС»).
  • Этимологические и заимствований
    Этимологический словарик — это лингвистическая энциклопедия. В нем вы прочитаете версии происхождения лексических значений, от чего образовалось слово (исконное, заимствованное), его морфемный состав, семасиология, время появления, исторические изменения, анализ. Лексикограф установит откуда лексика была заимствована, рассмотрит последующие семантические обогащения в группе родственных словоформ, а так же сферу функционирования. Даст варианты использования в разговоре. В качестве образца, этимологический и лексический разбор понятия «фамилия»: заимствованно из латинского (familia), где означало родовое гнездо, семью, домочадцев. С XVIII века используется в качестве второго личного имени (наследуемого). Входит в активный лексикон.
    Этимологический словарик также объясняет происхождение подтекста крылатых фраз, фразеологизмов. Давайте прокомментируем устойчивое выражение «подлинная правда». Оно трактуется как сущая правда, абсолютная истина. Не поверите, при этимологическом анализе выяснилось, эта идиома берет начало от способа средневековых пыток. Подсудимого били кнутом с завязанными на конце узлом, который назывался «линь». Под линью человек выдавал все начистоту, под-линную правду.
  • Глоссарии устаревшей лексики
    Чем отличаются архаизмы от историзмов? Какие-то предметы последовательно выпадают из обихода. А следом выходят из употребления лексические определения единиц. Словечки, которые описывают исчезнувшие из жизни явления и предметы, относят к историзмам. Примеры историзмов: камзол, мушкет, царь, хан, баклуши, политрук, приказчик, мошна, кокошник, халдей, волость и прочие. Узнать какое значение имеют слова, которые больше не употребляется в устной речи, вам удастся из сборников устаревших фраз.
    Архаизмамы — это словечки, которые сохранили суть, изменив терминологию: пиит — поэт, чело — лоб, целковый — рубль, заморский — иностранный, фортеция — крепость, земский — общегосударственный, цвибак — бисквитный коржик, печенье. Иначе говоря их заместили синонимы, более актуальные в современной действительности. В эту категорию попали старославянизмы — лексика из старославянского, близкая к русскому: град (старосл.) — город (рус.), чадо — дитя, врата — ворота, персты — пальцы, уста — губы, влачиться — волочить ноги. Архаизмы встречаются в обороте писателей, поэтов, в псевдоисторических и фэнтези фильмах.
  • Переводческие, иностранные
    Двуязычные словари для перевода текстов и слов с одного языка на другой. Англо-русский, испанский, немецкий, французский и прочие.
  • Фразеологический сборник
    Фразеологизмы — это лексически устойчивые обороты, с нечленимой структурой и определенным подтекстом. К ним относятся поговорки, пословицы, идиомы, крылатые выражения, афоризмы. Некоторые словосочетания перекочевали из легенд и мифов. Они придают литературному слогу художественную выразительность. Фразеологические обороты обычно употребляют в переносном смысле. Замена какого-либо компонента, перестановка или разрыв словосочетания приводят к речевой ошибке, нераспознанному подтексту фразы, искажению сути при переводе на другие языки. Найдите переносное значение подобных выражений в фразеологическом словарике.
    Примеры фразеологизмов: «На седьмом небе», «Комар носа не подточит», «Голубая кровь», «Адвокат Дьявола», «Сжечь мосты», «Секрет Полишинеля», «Как в воду глядел», «Пыль в глаза пускать», «Работать спустя рукава», «Дамоклов меч», «Дары данайцев», «Палка о двух концах», «Яблоко раздора», «Нагреть руки», «Сизифов труд», «Лезть на стенку», «Держать ухо востро», «Метать бисер перед свиньями», «С гулькин нос», «Стреляный воробей», «Авгиевы конюшни», «Калиф на час», «Ломать голову», «Души не чаять», «Ушами хлопать», «Ахиллесова пята», «Собаку съел», «Как с гуся вода», «Ухватиться за соломинку», «Строить воздушные замки», «Быть в тренде», «Жить как сыр в масле».
  • Определение неологизмов
    Языковые изменения стимулирует динамичная жизнь. Человечество стремятся к развитию, упрощению быта, инновациям, а это способствует появлению новых вещей, техники. Неологизмы — лексические выражения незнакомых предметов, новых реалий в жизни людей, появившихся понятий, явлений. К примеру, что означает «бариста» — это профессия кофевара; профессионала по приготовлению кофе, который разбирается в сортах кофейных зерен, умеет красиво оформить дымящиеся чашечки с напитком перед подачей клиенту. Каждое словцо когда-то было неологизмом, пока не стало общеупотребительным, и не вошло в активный словарный состав общелитературного языка. Многие из них исчезают, даже не попав в активное употребление.
    Неологизмы бывают словообразовательными, то есть абсолютно новообразованными (в том числе от англицизмов), и семантическими. К семантическим неологизмам относятся уже известные лексические понятия, наделенные свежим содержанием, например «пират» — не только морской корсар, но и нарушитель авторских прав, пользователь торрент-ресурсов. Вот лишь некоторые случаи словообразовательных неологизмов: лайфхак, мем, загуглить, флэшмоб, кастинг-директор, пре-продакшн, копирайтинг, френдить, пропиарить, манимейкер, скринить, фрилансинг, хедлайнер, блогер, дауншифтинг, фейковый, брендализм. Еще вариант, «копираст» — владелец контента или ярый сторонник интеллектуальных прав.
  • Прочие 177+
    Кроме перечисленных, есть тезаурусы: лингвистические, по различным областям языкознания; диалектные; лингвострановедческие; грамматические; лингвистических терминов; эпонимов; расшифровки сокращений; лексикон туриста; сленга. Школьникам пригодятся лексические словарники с синонимами, антонимами, омонимами, паронимами и учебные: орфографический, по пунктуации, словообразовательный, морфемный. Орфоэпический справочник для постановки ударений и правильного литературного произношения (фонетика). В топонимических словарях-справочниках содержатся географические сведения по регионам и названия. В антропонимических — данные о собственных именах, фамилиях, прозвищах.

Толкование слов онлайн: кратчайший путь к знаниям

Проще изъясняться, конкретно и более ёмко выражать мысли, оживить свою речь, — все это осуществимо с расширенным словарным запасом. С помощью ресурса How to all вы определите значение слов онлайн, подберете родственные синонимы и пополните свою лексику. Последний пункт легко восполнить чтением художественной литературы. Вы станете более эрудированным интересным собеседником и поддержите разговор на разнообразные темы. Литераторам и писателям для разогрева внутреннего генератора идей полезно будет узнать, что означают слова, предположим, эпохи Средневековья или из философского глоссария.

Глобализация берет свое. Это сказывается на письменной речи. Стало модным смешанное написание кириллицей и латиницей, без транслитерации: SPA-салон, fashion-индустрия, GPS-навигатор, Hi-Fi или High End акустика, Hi-Tech электроника. Чтобы корректно интерпретировать содержание слов-гибридов, переключайтесь между языковыми раскладками клавиатуры. Пусть ваша речь ломает стереотипы. Тексты волнуют чувства, проливаются эликсиром на душу и не имеют срока давности. Удачи в творческих экспериментах!

Проект how-to-all.com развивается и пополняется современными словарями с лексикой реального времени. Следите за обновлениями. Этот сайт помогает говорить и писать по-русски правильно. Расскажите о нас всем, кто учится в универе, школе, готовится к сдаче ЕГЭ, пишет тексты, изучает русский язык.